
19h Generative Art Conference GA2016

Page # 124

SongSkill: A System for Continuous, Emotionally-Adaptive Music
Generation
Paper

Topic: Music

Author:
B.T. Franklin
USA, Dunesailer Research Initiative
www.dunesailer.science

Abstract

 The generation of music using software is not an especially new concept. There are many
existing engines and approaches that are able to generate music at varying levels of quality, and in
many different styles. At the same time, there are various tools and websites that assist in the
selection of existing music based on mood or emotional content, and there has been a great deal
of research into understanding how music impacts human emotions. However, until now, there has
not been a sophisticated piece of software that can generate music based on the desired
emotional impact.
 Additionally, though much software has been written, and many techniques developed, to
generate music in various forms, most of these do not produce results that would necessarily be
appropriate for uses such as background music in games, at parties, etc.
 The SongSkill music generation framework was created for this purpose. The SongSkill software
generates music in a continuous manner, with the ability to adaptively respond to desired
emotional parameters. This paper describes, in detail, the methodology and software structures
used to construct SongSkill. Some of the especially difficult challenges faced (including, when
possible, their solutions) are also described, along with future directions for further research.

brandon.franklin@gmail.
com

Key words: music, generative music, emotions, music theory
Main References:
[1] Ryan Miyakawa et al., “Hooktheory I: Music Theory”, Hooktheory,
LLC., http://www.hooktheory.com, 2015
[2] M. Zentner et al., “Emotions Evoked by the Sound of Music:
Characterization, Classification, and Measurement”, American
Psychological Association, Emotion, 8(4), 2008

19h Generative Art Conference GA2016

Page # 125

SongSkill: A System for Continuous, Emotionally-Adaptive
Music Generation

B.T. Franklin, BACS

Chief Research Engineer, Dunesailer Research Initiative, Phoenix, AZ, USA
www.dunesailer.science

e-mail: brandon.franklin@gmail.com

Abstract
The generation of music using software is not an especially new concept. There are many
existing engines and approaches that are able to generate music at varying levels of quality,
and in many different styles. At the same time, there are various tools and websites that
assist in the selection of existing music based on mood or emotional content, and there has
been a great deal of research into understanding how music impacts human emotions.
However, until now, there has not been a sophisticated piece of software that can generate
music based on the desired emotional impact.

Additionally, though much software has been written, and many techniques developed, to
generate music in various forms, most of these do not produce results that would necessarily
be appropriate for uses such as background music in games, at parties, etc.

The SongSkill music generation framework was created for this purpose. The SongSkill
software generates music in a continuous manner, with the ability to adaptively respond to
desired emotional parameters. This paper describes, in detail, the methodology and software
structures used to construct SongSkill. Some of the especially difficult challenges faced
(including, when possible, their solutions) are also described, along with future directions for
further research.

1. Emotion Evocation vs. Emotion Conveyance

Understanding the relationship of a music generation system to a set of emotional
parameters requires understanding the distinction between “emotion evocation” and
“emotion conveyance”. Both of these are potential target goals of a music generator, and
both have been demonstrated to have an observable (though, unfortunately, not always
predictable) relationship to particular musical structures and techniques. The SongSkill
framework is designed to run with configurations that utilize either of these approaches.

1.1 Emotion Evocation

Emotion evocation refers to the process of evoking a particular emotion in the listener. In
other words, the music causes the listener to feel a certain way. Research into the details of
this process has revealed that there is a core set of emotions that are most commonly
evoked by music[1]. Similarly, there are some emotions, such as anger, that are difficult to

mailto:brandon.franklin@gmail.com
mailto:brandon.franklin@gmail.com
mailto:brandon.franklin@gmail.com

19h Generative Art Conference GA2016

Page # 126

directly and intentionally evoke in a listener.

Zentner et al., through the use of their Geneva Emotional Music Scales (GEMS) tests and
associated research, have demonstrated a hierarchical grouping of the emotions that are
most commonly evoked by music. They identify a collection of specific emotions which can
be grouped into “factors”. Those factors can then be grouped into “superfactors”, of which
there are only three. See Figure 1.

Emotional evocation is especially challenging because the process depends upon
psychological factors that vary greatly among listeners[2]. For example, a song might remind
a listener of a particular sad time in his or her life, thereby evoking the emotion “sadness”.
However, a different listener might not have the same type of association with the music
being produced, and therefore may not emotionally respond in the same way. It is nearly
impossible for a composer (or music generator) to predict with any degree of certainty how a
listener will respond to any given piece of music.

This is mitigated somewhat by the presence of various cultural expectations and cues that
can be reasonably expected to be shared among the listening audience for a particular work.
This is where the process of emotion evocation begins to cross over into emotion
conveyance.

1.2 Emotion Conveyance

Emotion conveyance refers to the process of communicating a particular emotion (or set of
emotions) in a musical piece. The emotional response of the listener is not important. The
process of emotion conveyance is successful if the listener is able to correctly identify and
understand the emotion that the composer was attempting to convey.

Because emotion conveyance does not depend upon any particular response in the listener,
the full array of possible emotions are available in the composer’s palette. Emotions that
cannot easily be evoked, such as despair, terror, and rage, can be directly communicated.

Any communication requires a common frame of reference for both parties, and this is where
similarities can be found between emotion evocation and emotion conveyance. In both
cases, the composer is utilizing a particular set of cultural expectations to represent
emotional information, whether that information is to be perceived intellectually or viscerally
by the listener. For example, Western culture almost universally accepts the use of slow,
quiet, minor keys as “sounding sad”.

Figure 1 - Emotions, Factors, and Superfactors from GEMS[1]
Superfactor Factor Emotion

sublimity
wonder

happy
amazed
dazzled
allured
moved

transcendence inspired
feeling of transcendence

19h Generative Art Conference GA2016

Page # 127

feeling of spirituality
thrills

tenderness

in love
affectionate
sensual
softened-up

nostalgia

sentimental
dreamy
nostalgic
melancholic

peacefulness

calm
relaxed
serene
soothed
meditative

vitality

energy

energetic
triumphant
fiery
strong
heroic

joyful activation

stimulated
joyful
animated
dancing
amused

unease
tension

agitated
nervous
tense
impatient
irritated

sadness sad
sorrowful

This is where one interesting trick for emotion evocation comes into play: It is often the case
that the emotion being conveyed by a song will be evoked, through a type of sympathetic
response, in the listener[3]. Therefore, a potential approach to addressing the challenge of
unpredictable emotion evocation is simply to focus on very effective emotion conveyance,
and hope that the listener has a sympathetic response that evokes that goal emotion in him
or her.

There are various structural features of music which are specifically associated with the
conveyance of particular emotions[4]. These features are tempo, mode, loudness, melody,
and rhythm. By combining these features with the emotions identified using GEMS, one can
produce a matrix of specific attribute values that can be used to convey goal emotions, at
least at the Factor level. See Figure 2.

Figure 2 - Emotion Conveyance Attributes

19h Generative Art Conference GA2016

Page # 128

Emotion Factor Tempo Mode Loudness Melody Rhythm
Wonder slow/mid major mid harmonious smooth/varied
Transcendence mid major mid harmonious smooth/varied
Tenderness slow/mid major quiet harmonious smooth
Nostalgic slow any mid/quiet harmonious smooth
Peacefulness slow major quiet harmonious smooth

Energy fast any loud/mid any varied
Joyful Activation fast major loud/mid any varied

Tension any minor varied clashing irregular
Sadness slow minor mid any smooth/varied

Notably, I have chosen to focus on emotion conveyance and evocation at the Factor level
instead of the specific emotion because the distinction between the required attributes at the
more granular level is not very clear. For example, the specific differences between the
attributes that evoke “calm” vs. “relaxed” vs. “serene” are unclear. Additionally, the large
number of possible emotions makes the matrix quickly become unmanageable in addition to
containing dubious assumptions. I have found that focusing music generation at the Factor
level produces much more practical results due to clearer distinctions.

2. Implementation Language

The SongSkill framework is implemented entirely in the recently-introduced Swift
programming language, version 3, and runs natively on macOS. Swift was selected for this
purpose because it is an expressive, concise language with a heavy focus on good object-
oriented programming practices, code correctness, and performance. It also allows simple
implementation of flexible UIs both now and in the future, and has built-in support for many
front-end technologies such as sound production.

3. Playback Structure and Engine

The SongSkill framework includes an underlying MIDI-based playback engine called
MODIPlayer. This engine uses MIDI for output, but organizes the structures to be played
back into “tracks” and “rows”, following the approach popularized by the many module
tracker programs in the 1980’s and 1990’s demoscene[5]. This is where the name
“MODIPlayer” comes from; it is a combination of the terms “MOD” and “MIDI”.

The MODIPlayer supports multiple simultaneous MODIChannels, each of which is mapped
to exactly one MIDI channel, and has exactly one active instrument from the standard set of
MIDI instruments. There is a special MODIChannel dedicated to percussion, which maps to
MIDI channel 10 as a special case (guided by the special role of this channel in the MIDI
specification).

19h Generative Art Conference GA2016

Page # 129

Each MODIChannel is provided at any point in time with at least one NoteStrip structure,
which represents exactly one measure of music for only that channel. The NoteStrip is made
up of a series of Rows, with each beat of music being represented by four Rows. In this way,
each Row can be thought of as representing a sixteenth note of positional information.

Rows are used to store various Operations, and multiple Operations can exist within the
same Row. At the time of this writing, the following Operations are supported:

● Do nothing
● Start note with specific pitch, velocity, and lifespan (in rows)
● Stop note of specific pitch
● Set tempo to a specific beats-per-minute rate

Additional instructions will probably be added in the future, such as an instruction to change
the MIDI instrument that is currently associated with the channel. The presence of the “Do
nothing” Operation allows a simple requirement to be met: Every Row must contain at least
one Operation.

Because beats are represented by a specific, known number of Rows, tempo is implemented
in a straightforward way by simply controlling the rate at which Rows are read and executed
from their containing NoteStrip.

This playback mechanism can most easily be envisioned as being similar to the paper strips
of music used to control a pianola, where notes to be triggered simultaneously occupy the
exact same horizontal row, and the movement of the paper is always at a constant rate.

The MIDI engine that is used to produce the actual sounds is the AVAudioEngine that is
included with Apple’s AVFoundation framework. At the time of this writing, the engine is using
the FluidR3_GM soundfont, which is available for free online[6], but future versions may
support alternate or additional soundfonts.

4. Compositional Structure and Engine

The SongSkill framework uses multiple stages and layers of algorithms during the generative
process. Broadly speaking, these are modeled after the sequence of steps that a human
composer might use in creating a new piece. However, the open-ended nature of the
system, as well as the goal of being able to create music endlessly, means that the
generative process must be very dynamic and self-reflective, with early steps sometimes
“setting the stage” for the steps that follow. Other steps look at what has already been
generated to use as a basis for new structures.

4.1. Represented Musical Elements

The data structures manipulated by SongSkill provide an insight into its function. While not
every musical concept is (or can realistically be) represented, this core set is adequate for
the production of the vast majority of relatable music. The data structures are:

19h Generative Art Conference GA2016

Page # 130

● Pitch (between 0 and 127, similar to the MIDI specification)
● Duration (expressed in quarterbeats, and therefore MODIPlayer Rows)
● Dynamic (between 1 and 127, similar to the MIDI specification)
● Moment (which has a Duration)

○ Note (a type of Moment with a Pitch, Duration, and Dynamic)
○ Rest (a type of Moment with a only a Duration)

● Measure (contains a collection of Moments)
● Scale
● Chord (expressed by degree: I, II, III, IV, V, or VI)
● Tempo (expressed in beats per minute)

Of these, the only data structure containing substantial logic is Scale, which is able to return
Pitches dynamically for any represented musical scale. Scale modes that can be
represented at the time of this writing are: Major, Major Pentatonic, Minor, and Minor
Pentatonic. Scales beginning in any key are supported.

4.2. Stochastic Models

Several pieces of the SongSkill framework rely on stochastic models. To create a consistent
set of representations, and ease the coding process, two data structures were created as
utility classes.

The ProbabilityGroup class is instantiated with a collection of “buckets”, each of which is any
object that implements the Hashable protocol built into Swift. Each bucket is associated with
a percentage value in the range 1-100. A ProbabilityGroup requires that all of its bucket
probabilities add up to 100. The API of ProbabilityGroup allows for a randomly-selected
bucket to be retrieved at any time. The probability that any given bucket will be returned is
the percentage value that was associated with it when the ProbabilityGroup was created.

The WeightedProbabilityPile class also uses buckets, but each bucket is instead associated
with a “weight” value rather than a percentage. Buckets can be added, removed, and
retrieved (without removal) from the pile at any time. The chance that any given bucket will
be retrieved is proportionate to the relative size of that bucket’s weight value to the total
weight values currently in the pile.

Both of these classes use pseudorandom numbers provided by the arc4random_uniform()
utility function that is part of Apple’s Foundation framework.

4.3. Aesthetic Guides

As mentioned earlier, the SongSkill framework is able to support both emotion conveyance
and emotion evocation goals. In fact, the framework is even more flexible than this,
externalizing the rules for music generation into AestheticGuides. An AestheticGuide
implementation has subsections called “chapters” that are each associated with, and provide
guidance for, a specific phase or component of the generation process.

Any particular AestheticGuide implementation is based upon a specific musical goal for the
generator. For example, there is an AestheticGuide for emotion evocation called
EmotionEvocationAestheticGuide. Other implementations can be created, such as one for

19h Generative Art Conference GA2016

Page # 131

emotion conveyance, or one for the generation of dance music, or doom metal.

When any element of the framework can be configured with probabilities, options, or any
other modifiable aspect of the generation process, it consults its AestheticGuide chapter.

4.4. Flow Generation

It is common for popular music pieces to follow structured patterns of repetition and
variation. The incorporation of musical fragments and sections that are recognizable to the
listener can enhance the listener’s ability to feel a sense of predictability, and therefore
familiarity and comfort with the piece. Repetition has also been found to enhance the
intensity of the listener’s emotional response to the music.[7]

However, the SongSkill framework is designed to generate continuous music, which does
not lend itself to some of the same structures used by popular music, such as the following
examples:

● verse | chorus | verse | chorus | bridge | solo | verse | chorus
● intro | verse | chorus | verse | chorus | solo | verse | chorus | outro

These structures generally assume a beginning and end to a song. The idea of an “intro” or
an “outro” is effectively meaningless in a continuous-generation context.

To accomplish the goal of a structured musical flow in a continuous manner, the SongSkill
framework uses the concept of a SongFlowPath. This is a data structure that contains a
Pattern that is made up of Sections. Sections each have a simple identifier (such as A, B, C,
etc.) and a designation (none, prime, double-prime). Following musical tradition, the
designation is a way of indicating that a Section is based very closely upon another Section,
but with some modification. For example, A’ (read “A prime”) is very similar to, but not exactly
the same as, A.

At the time of this writing, the following SongFlowPaths are supported by the generator:

● A B A B
● A A B A’
● A A’ A A’
● A A B B A A B B
● A A B B A A C C
● A A’ B B’

Each Section defines the identify of four measures of music. The generator creates each
Section lazily, and only as needed, based on the current state of playback within the
SongFlowPath. When playback has reached the end of the defined SongFlowPath, a new
one is immediately generated, allowing the music to flow seamlessly into it and continue.
This means that “A” in one SongFlowPath does not refer to the same “A” from the previous
SongFlowPath, allowing the music to take advantage of repetition within a single SongFlow,
but generate novel sections after the same sections have been reused adequately.

4.5. Compositional Memory

19h Generative Art Conference GA2016

Page # 132

As mentioned above, when a new SongFlowPath is generated, the previously-generated
Sections are discarded. However, there is value in maintaining and reusing some of the
information generated during the creation of those Sections. As the music continues to be
played and generated, the subtle (or not-so-subtle) use of some of the same note sequences
and other musical characteristics that have already been used can create a sense of
coherence, and deepen the sense of familiarity in the listener.

This is achieved through the use of the SongSessionMemory. There is a single instance of
this class that persists throughout the entire music generation runtime. This works in a way
philosophically similar to a Least-Recently Used (LRU) cache, in that musical elements
which have been used the most recently are the most likely to be used again during the
generation process, and elements that have not been used in the longest amount of time are
the most likely to be “forgotten” by being discarded to make room for newer elements.

At the time of this writing, this is the area of SongSkill that is under the most intense research
and development, and the exact elements that will be stored and reused are still being
determined.

4.6. Part Generation Stages

The SongSkill framework generates music in a layered approach, with each layer being
associated with one musical “part” in the formal sense. Each subsequent layer can then refer
to the output of the previous layers to inform its own generation process. Relatedly, each
layer can store and present specific metadata about the choices it made during the
generation process, making analysis simpler for subsequent layers. This is analogous to
musicians in a “jam session” who are each listening to one another and making adaptive
choices as well as providing cues and hints to the other musicians indicating what will most
likely follow.

As mentioned above, music is generated one Section at a time, so each of these layer
generators is an implementation of the PartGenerator protocol, and the collective output is in
the form of a GeneratedSection object which owns several data structures, each of which
implements the GeneratedPartSection protocol.

4.6.1. Chord Progression Generation

At the time of this writing, section generation begins with the ChordsPartGenerator. This part
is based on the concept of a section being driven by an underlying chord progression, which
is an attribute shared by the majority of popular music.

Chord progressions are generated using stochastic models based upon the research into
common chord progressions in popular music that has been done by Anderson et al.[8] in
the production of the crowdsourced TheoryTabs website and associated Hooktheory book.
By utilizing the public API provided on the site, I was able to produce a simple set of numeric
probabilities indicating both how likely a given chord was to begin a progression and how
likely any chord was to be followed by any other chord. Adjusting these values slightly based
on my own knowledge to produce better results, I arrived at a straightforward stochastic

19h Generative Art Conference GA2016

Page # 133

model of chord transitions, which can be understood as a state machine. See Figure 3.

To determine the number and placement of the chords in a generated progression, the
framework employs various implementations of ChordsPartSectionDesigner. By doing an
approximate visual analysis of the most common progression structures illustrated on the
TheoryTabs website, I was able to determine five of the most common structures, and create
implementations of ChordsPartSectionDesigner to build each of them. These structures are:

● One Chord per Measure
● Ahead of the One (where each chord begins slightly before the beginning of each

subsequent measure)
● Split Chord (where only one measure has two chords, each occupying half the length

of the measure, and the other measures each have one chord)
● Boosted Chord (where the chord of the last measure begins halfway through the

previous measure, and all other measures have one chord)
● Single-Chord Dominant (where one chord extends through all the measures except

for the last measure, which has a different chord)

Figure 3 - Chord Transition Probabilities
 I II III IV V VI
I 0 5 5 30 45 15
II 15 0 10 20 25 30
III 5 10 0 40 10 35
IV 40 5 5 0 40 10
V 30 5 5 30 0 30
VI 15 5 5 40 35 0
The starting chord is shown on the left. Chords to transition to are shown along the top. Each value is expressed as a percentage chance of
the transition occurring. Higher probabilities are indicated with darker color.

After the progression structure has been determined and the chords have been placed, an
interpretation technique is selected. Techniques are represented using implementations of
the ChordTechnique protocol. At the time of this writing, there are two completed
implementations:

● Block Chord Technique (plays all the notes of a chord at once)
● Arpeggio Chord Technique (plays the notes of a chord in sequence, with various types

of sequences available)

The selected technique is used to produce individual Note instances which are placed in the
Measures of the ChordsGeneratedPartSection.

4.6.2. Melody Generation

Melody generation begins with the selection of a MelodyPartSectionDesigner
implementation. At the time of this writing, the only two versions that have been implemented
are a “freeform” designer and a “repetition” designer. The former creates a melody structure
that spans the entire length of the section, whereas the latter generates a shorter melodic

19h Generative Art Conference GA2016

Page # 134

structure and repeats it within the section design, allowing for small variations to add interest.
No actual notes are generated during this design stage.

After a design has been finalized, an implementation of MelodyTechnique is selected to
generate the actual notes of the melody. At the time of this writing, the only two technique
implementations are “all scale degrees” and “pentatonic”, with the former allowing any note
in the scale, and the latter restricting the note choices to the pentatonic scale within the
current key.

The selected technique is used to generate the notes of the melody through the use of a
melody-specific stochastic model. The starting note of the melody is selected using
probabilities shown in Figure 4. The duration of the note is determined using the probabilities
shown in Figure 5. Each subsequent note is selected based on a relative movement within
the current scale, using the probabilities shown in Figure 6.

Figure 4 - Starting Notes of Melody

Starting Scale
Degree

All Degrees Probability
(%)

Pentatonic (Major)
Probability (%)

Pentatonic (Minor)
Probability (%)

1 30 30 35
2 5 5 --
3 20 20 20
4 5 -- 20
5 30 5 5
6 5 30 --
7 5 -- --

Figure 5 - Duration of Notes in Melody

Duration
(beats) Probability (%)

3 10
2 20
1 30

1/2 25
1/4 15

Figure 6 - Note Transition Probabilities in Melody

Interval
All Degrees

Probability (%)
Pentatonic

Probability (%)
3 3 --
2 7 5
1 15 20
0 50 50

-1 15 20
-2 7 5
-3 3 --

After all the notes have been selected for the length of the Section, a final “enhancement”
pass is made, adjusting notes that occur on a beat that are not on a stable degree to the
nearest stable degree. This is a technique recommended by Anderson et al. [9] in the book,
Hooktheory I, for producing much more pleasing melodic lines.

19h Generative Art Conference GA2016

Page # 135

4.6.3. Percussion Generation

The percussion generation stage focuses on generating rhythmic accompaniment using
sounds approximating a drum set. As described above, this takes advantage of the nature of
MIDI channel 10 as a percussion-only channel, since this channel allows multiple types of
instruments to be played in parallel. The pitch value provided for any given note determines
what percussion instrument is played by that note.

The PercussionPartGenerator uses the current musical goal to select a protocol
implementation of the PercussionInterpretationGenerator protocol. The generator selects an
array of percussion techniques to apply to the channel, organized by the specific instrument
that the technique represents. For example, here are some of the percussion technique
implementations at the time of this writing:

● SimpleKickDrumPercussionTechnique
● SimpleSnareDrumPercussionTechnique
● SimpleHiHatPercussionTechnique
● SimpleRideCymbalPercussionTechnique

Only techniques that are appropriate for the current GeneratedSection are applied, and each
implementation is interrogated to identify for itself whether or not it is appropriate. Each
appropriate technique uses its own distinct algorithm to produce a resulting sequence of
Notes, and adds them to the Measure in a layered manner, with each subsequent technique
adding Notes for its specific instrument.

5. Noteworthy Challenges and Difficulties

Perhaps the most difficult challenge encountered overall is the process of specifically
identifying and replicating the musical attributes that relate to an exact target emotion factor.
It is, somewhat surprisingly, relatively easy to generate music that “sounds good” to most
listeners, but shaping that process such that it evokes specific emotional responses in the
same listeners is much less clear-cut. Frequently, the process involves a great deal of trial
and error, and I am not aware of any research that provides exact musical parameters for the
evocation of particular emotions across the entire spectrum. In fact, such exact parameters
may not even exist, known or not.

Other challenges have been of a more technical nature. For example, even with a very well-
defined Note and Measure API, the process of interrogating existing musical information to
build a different musical part upon is complex and laborious. This is exacerbated somewhat
by the fact that there is no “one size fits all” solution for the generation of musical parts. Each
part is generated in a different way, and as a result, employs unique data structures to
represent output. This can, unfortunately, introduce implementation-specific dependencies in
PartGenerators that follow and depend upon earlier ones.

One challenge that was encountered well into the development process was the ability to
generate music for aesthetic goals other than the evocation of emotions. Other goals, such
as generating only a specific genre of music, or generating music to convey (rather than

19h Generative Art Conference GA2016

Page # 136

evoke) a particular emotion, seem to be just as valuable, but the SongSkill framework was
not originally imagined as being able to support them all. This problem was solved with the
introduction of the AestheticGuide concept, which externalized the aesthetic goals and made
the framework much more general.

Challenges on the horizon include, but are not limited to:

● Very robust musical memory
● Background threading, to allow music generation while heavy UI or graphics use is in

progress
● Discovering a general style of open-ended interpretation for chords, rather than

specific hard-coded note sequences

6. Future Directions

I expect SongSkill to be under development and growing in capability for years to come.
There is a long list of areas of improvement and expansion, some of which are:

● Broadening of support for different emotion factors
● Introduction of genre-specific interpretations, and the ability to dynamically “remix”

these with one another
● Support for switching instruments during the song generation process
● More PartGenerators, such as bass, decorative effects, and atmospheric pads
● Various commercial applications that use SongSkill to provide music for specific

scenarios (yoga, fear of flying, house party, retail ambiance, etc.)

References

[1] M. Zentner et al., “Emotions Evoked by the Sound of Music: Characterization,
Classification, and Measurement”, American Psychological Association, Emotion, 8(4), 2008

[2] Scherer, K. R.; Zentner, M. R. (2001). "Emotional effects of music: production rules".
Music and Emotion: Theory and Research: 361–387.

[3] Hunter, P. G.; Schellenburg, E. G.; Schimmack, U. (2010). "Feelings and perceptions of
happiness and sadness induced by music: Similarities, differences, and mixed emotions".
Psychology of Aesthetics, Creativity, and the Arts. 4: 47–56.

[4] Gabrielle, A.; Stromboli, E. (2001). "The influence of musical structure on emotional
expression". Music and Emotion: Theory and Research: 223–243.

[5] Ranjan Parekh (2006). Principles of Multimedia. Tata McGraw-Hill. p. 727. ISBN 978-0-
070-58833-2.

[6] "SoundFonts to try." SynthFont www.synthfont.com/soundfonts.html. Accessed 5 Nov.
2016.

[7] Ali, S. O.; Peynircioglu, Z. F. (2010). "Intensity of emotions conveyed and elicited by

19h Generative Art Conference GA2016

Page # 137

familiar and unfamiliar music". Music Perception: An Interdisciplinary Journal. 27: 177–182.

[8] Miyakawa, Ryan, Dave Carlton, and Chris Anderson. "Famous Chord Progressions."
TheoryTabs, Hooktheory LLC, https://www.hooktheory.com/theorytab/common-chord-
progressions. Accessed 5 Nov. 2016.

[9] Miyakawa, Ryan, Dave Carlton, and Chris Anderson. "3.3 Stable vs. Unstable Degrees."
Hooktheory I, Hooktheory LLC, 5 June 2012. Accessed 5 Nov. 2016.

19h Generative Art Conference GA2016

Page # 138

PIANO & DANCER
(Paper)

Topics: Dance and Music

Author(s):
Daniel Bisig
Switzerland, Zurich University of the Arts, Institute for Computer Music
and Sound Technology
www.icst.net
Pablo Palacio
Spain, Independent Composer
pablopalacio.com
Muriel Romero
Instituto Stocos, Madrid, Spain
www.stocos.com

Abstract
PIANO & DANCER is an interactive piece for a dancer and an electromechanical acoustic piano.
The piece presents the dancer and the piano as two performers on stage whose bodily movements
are mutually interdependent. This interdependence reveals a close relationship between physical
and musical gestures. Accordingly, the realization of the piece is characterized by a creative
processes that merges choreographic and compositional methods. In order to relate the expressive
movement qualities of a dancer to the creation of musical material, the piece employs a variety of
techniques. These techniques include methods for movement tracking and analysis, generative
algorithms for creating spatial and temporal structures, and the application of non-conventional
scales and chord transformations to shape the modal characteristics of the music. The publication
presents the artistic and technical aspects of this work and discusses some of the challenges that
have shaped the creative outcome.

daniel.bisig@zhdk.ch
Zurich University of the
Arts
Institute for Computer
Music and Sound
Technology
Pfingsweidstrasse 96
8031 Zurich
Switzerland

Key words: Generative Music, Sensor Augmented Dance, Disklavier
Main References:
[1] Daniel Bisig, Pablo Palacio, “Neural Narratives - Dance with Virtual
Body Extensions”, In Proceedings of the 3rd International Symposium
on Movement and Computing, ACM, Thessaloniki, 2016.
[2] Daniel Bisig, Pablo Palacio, “STOCOS - Dance in a Synergistic
Environment”, In Proceedings of the Generative Art Conference, Lucca,
2012

mailto:daniel.bisig@zhdk.ch

